Control Systems Engineering Lab

Course Code	19EE3552	Year	III	Semester	Ι
Course	Program	Branch	EEE	Course Type	Lab
Category	Core				
Credits	1.5	L-T-P	0-0-3	Prerequisites	NIL
Continuous	25	Semester End	50	Total Marks:	75
Internal		Evaluation:			
Evaluation:					

Course Outcomes							
	Upon successful completion of the course, the student will be able to						
CO1	Analyze the performance characteristics and working of Magnetic amplifier, DC & AC servo motors and synchros. (L4)						
CO2	Determine the transfer functions of DC Motor and DC generator and acquire compensatin networks (L3)						
CO3	Demonstrate the time response analysis and performance of PID controllers (L3)						
CO4	Compute/Operate programmes in MATLAB software and PLC programming which will help them in doing their projects. (L2 & L3)						

N	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												3	1
CO2	3	3											3	1
CO3	3	3	3	2		1							3	1
CO4	3	3		3	3							2	3	2

	Syllabus						
Expt.	Contents						
No.	No.						
PART-A (Any Eight Experiments)							
1	Time response of Second order system	CO3					
2	Characteristics of Synchros	CO1					
3	Effect of P, PD, PI, PID Controller on a second order systems	CO3					
4	Transfer function of DC motor	CO2					
5	Temperature controller using PID	CO3					
6	Characteristics of magnetic amplifiers	CO1					
7	Programmable logic controller – Study and verification of truth tables of logic gates	CO4					
8	Characteristics of AC servo motor	CO1					
9	Characteristics of DC servo motor	CO1					
10	Transfer function of DC generator	CO2					
11	Lag and lead compensation – Magnitude and phase plot	CO2					
PART-B (Any Two Experiments)							
1	Bode Plot, Root locus, Nyquist Plots for the transfer functions of systems using						
1	MATLAB.	CO2					
2	Controllability and Observability test using MAT LAB.	CO4					

3	State space model for classical transfer function and vice versa using MATLAB – Verification.			
4	Stability of a mechanical translating system using MATLAB Simulink.	CO4		
5	Block diagram representation of field controlled DC servo Motor using MATLAB Simulink.	CO4		
6	Time response of first order systems for standard test signals using MATLAB	CO4 CO3		

Learning Resources Text Books

- 1. Control Systems by Nagoor Kani, RBA Publications, 2nd edition 2017.
- 2. MATLAB and its Tool Books user's manual and Mathworks, USA.
- 3. Programmable Logic Controllers-Programming Method and Applications –JR.Hackworth & F.DHackworth Jr. –Pearson, 2004